
Embedded Thursday
Variable + Timers + PWM + Intro to Interrupts

Ivan Quiroz

Today

› The project Goal and System

› Recap

› Variables

› Hardware PWM

› Timers

› Intro to Interrupts

Goal Description

› Learn C as embedded language

› Use C to understand underlying processor

› Have a project so learning stays
– We are making a self balancing robot

Todays GoalTodays GoalTodays GoalTodays Goal
– Learn to set PWM
– Learn to set Timers
– Learn how interrupts work

Recap on Inputs/Outputs and registers
› Step 1: enable ports use register RCC_AHB1ENR

› Step 2: set Ports as IN or OUT writing to register GPIOx_MODER

› Step 3: set Pin HIGH or LOW writing to register GPIOx_ODR

› Step 4: read Input Pin by reading register GPIOx_IDR

› Debounce if you are reading a switch

OperatorsOperatorsOperatorsOperators

› XOR ^=^=^=^= Use: switch bit to opposite value

› OR |=|=|=|= Use: Impact a bit, don’t disturb others by OR’ing desired bit with 0x001

› AND &=&=&=&= Use: Impact a bit, don’t disturb others by OR’ing desired bit with 0x110

› AND &&&& Use: Mask a bit with using 0x001

Variables brief Introduction

unsigned char 8-bit unsigned 0 to +255
signed char 8-bit signed -128 to +127
unsigned int compiler-dependent
int compiler-dependent
unsigned short 16-bit unsigned 0 to +65535
short 16-bit signed -32768 to +32767
unsigned long unsigned 32-bit 0 to 4294967295L
long signed 32-bit -2147483648L to

2147483647L
float 32-bit float ±10-38 to ±10+38
double 64-bit float ±10-308 to ±10+308

Variable allocate a location in memory
during compiling

The datatype defines the expected data
we will use in a variable

#include <stdint.h>

• int8_t

• int16_t

• int32_t

Volatile: A variable that may change at any time without any action being taken by the code
volatile int8_t Switchstatus

In embedded volatile is used to

• Define I/O ports (value of ports can change outside of software action. i.e. switch pressed
• Share a global variable between the main program and an interrupt service routine.
• Global variables accessed by multiple tasks within a multi-threaded application

• uint8_t

• uint16_t

• uint32_t

Variables

#define RCC ((RCC_TypeDef *) RCC_BASERCC_BASERCC_BASERCC_BASE)

#define PERIPH_BASEPERIPH_BASEPERIPH_BASEPERIPH_BASE ((uint32_t) 0x40000000U)

#define AHB1PERIPH_BASEAHB1PERIPH_BASEAHB1PERIPH_BASEAHB1PERIPH_BASE (PERIPH_BASEPERIPH_BASEPERIPH_BASEPERIPH_BASE + 0x00020000U)

#define RCC_BASERCC_BASERCC_BASERCC_BASE (AHB1PERIPH_BASEAHB1PERIPH_BASEAHB1PERIPH_BASEAHB1PERIPH_BASE + 0x3800U)

Pointer Definition
0x400023800

Timers – TIM4

› A timer is a special register that once
enabled it counts
– The bucket to count is only so big
– Once the bucket is full, it overflows
– You can prefill the bucket
– You can set the speed to fill the bucket
– Interrupts can inform you if bucket has overflown

› We will use the Advance Control Timer TIM4
– 16 Bit bucket 216 :: 0 to 65,536 (count up/down)
– Once it reaches value on Auto-Reload Register it restarts
– We will use it for PWM generation (square wave form)
– Use pre-scalars to set speed of count

STM32F411E-DISCO

Given location of LED we will use Given location of LED we will use Given location of LED we will use Given location of LED we will use Timer 4 (TIM4) to Timer 4 (TIM4) to Timer 4 (TIM4) to Timer 4 (TIM4) to generate PWMgenerate PWMgenerate PWMgenerate PWM

› Port-D.Pin12: AF02 - CH1

› Port-D.Pin13: AF02 - CH2

› Port-D.Pin14: AF02 – CH3

› Port-D.Pin15: AF02 – CH4
› Source: STM32F411 datasheet table-9

PWM Mode (Reference Manual 13.3.9)

› Generate a square signal of determined frequency
– Frequency determined by TIM4_ARR register
– Duty Cycle determined by TIM4_CCR1 register

ARR

CCRx

FREQUENCY = ON and OFF per secondFREQUENCY = ON and OFF per secondFREQUENCY = ON and OFF per secondFREQUENCY = ON and OFF per second

DUTY CYCLE = Ratio of time ON to OFFDUTY CYCLE = Ratio of time ON to OFFDUTY CYCLE = Ratio of time ON to OFFDUTY CYCLE = Ratio of time ON to OFF

CNT

OCx

PWM Setup (follow section 13.3.9)

TIM4 registers to use:TIM4 registers to use:TIM4 registers to use:TIM4 registers to use:
�_ARR
�_CCRx
�_CCMR1
�_CR1
�_EGR
�_CCER
�_SR
�_OSPEER
�_CNT
�_PSC

a. Configure Port-D as outputs
a. Enable clock to Port D
b. Set PD12-15 as outputs

b. Set up timer to start counting
a. Count upwards
b. Set the period
c. Set clock divider
d. Set prescalar

c. Set Port-D PD12-15 to alternate
Function

d. Configure timer for duty cycle
a. Set CH1-4 to PWM mode
b. Select AF2 for PD12-14

Code – still needs work

Application
Extra Activities

Homework

› Create block diagram of design

› Get switch to blink lights at different rates

Back Up Slides
Hardware Reference Material

SIMPLIFIED
STM34F411
ARCHITECTURE

• IIII----Code Bus Code Bus Code Bus Code Bus use to fetch
instructions from Flash ROM

• System Bus: System Bus: System Bus: System Bus: use to work with
variables and IO Ports

• DDDD----Code Bus: Code Bus: Code Bus: Code Bus: debug bus

• Advdvdvdv Hi i i i Bus: us: us: us: Connection to IO
ports and dedicated USB
ports

STM32F411
BLOCKDIAGRAM
Note the following buses:

• RCCRCCRCCRCC---->AHB1ENR >AHB1ENR >AHB1ENR >AHB1ENR
needed as Port D uses
AHB1 (yellow)

PWM DIAGRAM
CLOCK GENERATION

• APB1 clock is used at
42Mhz

• Prescaler set to divide
by 2

• For a 10Khz PWM a ARR
of 2099 would be used
• Consider the 21Mhz clock used

