
Embedded Training– MakeICT Workshop

1111 PPPPROJECT GOALROJECT GOALROJECT GOALROJECT GOAL

Come learn with use as we introduce programming skills via a project and program embedded systems with

the vision of understanding the hardware and software details that Arduino would hide. We will effectively

contrast the Arduino IDE to the way we perform the same activities,

with the goal of learning how it is done and not rely only on someone

else library

The workshop end goal is not to just prototype a system, but rather

learn as we go prototyping a system and understanding and having

full control of the activities being performed.

2222 WWWWORKSHOP ORKSHOP ORKSHOP ORKSHOP AAAAGENDAGENDAGENDAGENDA

WEEK 1: INTRODUCTION

• Introduction

• What is embedded

• What is Arduino

• What is the project

• What are we doing

• Activity: Define your project- block diagram it

• Quick overview of C structure Main()

• Quick overview of Variables

• Quick overview of Functions

• Tools

• Activity: Sudo Code the behavior

WEEK 2:

3333 PPPPROJECT ROJECT ROJECT ROJECT DDDDEFINITIONEFINITIONEFINITIONEFINITION

My plan is to create a balancing robot to use as a platform to learn C as embedded language. The balancing

robot hardware will use:

• Processor: STM32F411E-DISCO

• Serial Dongle: http://www.digikey.com/product-detail/en/ftdi-future-technology-devices-

international-ltd/UMFT234XD-WE/768-1175-ND/3904924

• Motor Drivers: http://www.amazon.com/StepStick-DRV8825-Stepper-Driver-

Printer/dp/B00S3Q9YZA/ref=sr_1_1?s=hi&ie=UTF8&qid=1458786809&sr=1-1&keywords=A4988

• Motor: http://www.amazon.com/Stepper-Motor-Bipolar-64oz-

Printer/dp/B00PNEQI7W/ref=cm_cd_al_qh_dp_t

• 1 battery: http://www.amazon.com/Turnigy-1300mAh-20C-Lipo-

Pack/dp/B0072AEKY8/ref=sr_1_21?s=toys-and-games&ie=UTF8&qid=1458788066&sr=1-

21&keywords=11.1V+LiPO

• 1 battery charger:

• 1 power switch: http://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias%3Dtoys-and-

games&field-keywords=rc+switch

• Wire

• Soldering

• 3D printed body / Laser cut body

4444 WWWWHAT IS HAT IS HAT IS HAT IS EEEEMBEDDED MBEDDED MBEDDED MBEDDED PPPPROGRAMMINGROGRAMMINGROGRAMMINGROGRAMMING????

What is a program? A program is a set of logical instructions that together execute to deliver some sort of

function or activity. A program run in a target environment, like computers, servers, mobile phones or

dedicated boards/microcontrollers. Depending on the target you use to program there are different

languages available to code programs.

An embedded device can be consider one that has a single function, might not be upgradable, or might not

be easily accessible. Some example of embedded devices are your microwave, your A/C controller, your

Fitbit, etc. While a smart phone I do not consider an embedded device, it is certainly a collection of

embedded functions (like temperature monitoring, battery charging, etc)

Embedded programing refers to the type of programming done on dedicated boards or embedded devices

using microcontrollers or microprocessors that do not have enough features to run like computers or servers

or mobile phones. Arduino environment can be considered embedded programming that targets the

programming of Atmel microprocessor.

What language is worth learning? Well there is not a

straight answer to that, there is a language that will work

well depending of the application. For example I need to

send serial data really quick to test out a device? I could use

an Arduino and use it as a test tool.

We will use C for this course as it is the most relevant

program with in Embedded. C++ is another great option

which can be investigated.

Source: http://spectrum.ieee.org/

5555 AAAA LITTLE BIT ABOUT LITTLE BIT ABOUT LITTLE BIT ABOUT LITTLE BIT ABOUT MMMMICROCONTROLLERS ICROCONTROLLERS ICROCONTROLLERS ICROCONTROLLERS

A microcontroller is a programmable device, which upon power up it stars executing commands starting on

the top of its memory map. It executes the instruction on each clock cycle, and increases a counter to the

next address in the memory map.

<<Add figure of actual microprocessor might help>>

A simplified block diagram of a microcontroller based on the ARM® Cortex™-M processor.

It is a Harvard architecture because it has separate data and instruction buses.

• Instructions are fetched from flash ROM using the ICode bus.

• Data are exchanged with memory and I/O via the system bus interface.

• On the Cortex-M4 there is a second I/O bus for high-speed devices like USB.

• There are many sophisticated debugging features utilizing the DCode bus.

• The nested vectored interrupt controller (NVIC) manages interrupts, which are hardware-triggered

software functions.

o Some internal peripherals, like the NVIC communicate directly with the processor via the

private peripheral bus (PPB).

o The tight integration of the processor and interrupt controller provides fast execution of

interrupt service routines (ISRs), dramatically reducing the interrupt latency.

The computer can store information in RAM by writing to it, or it can retrieve previously stored data by

reading from it.

o RAMs are volatile; meaning if power is interrupted and restored the information in the RAM is lost.

o Most microcontrollers have static RAM (SRAM) using six metal-oxide-semiconductor field-effect

transistors (MOS or MOSFET) to create each memory bit.

Information is programmed into ROM using techniques more complicated than writing to RAM.

o ROMs are nonvolatile; meaning if power is interrupted and restored the information in the ROM is

retained.

o Some ROMs are programmed at the factory and can never be changed.

o A Programmable ROM (PROM) can be erased and reprogrammed by the user

o The erase/program sequence is typically 10000 times slower than the time to write data into

a RAM

o Electrically erasable PROM (EEPROM) are both erased and programmed with voltages.

� We cannot program ones into the ROM.

� We first erase the ROM, which puts ones into the entire memory

� Then we program the zeros as needed.

o Flash ROM is a popular type of EEPROM.

o In regular EEPROM, you can erase and program individual bytes.

o Flash ROM must be erased in large blocks.

o Because flash is smaller than regular EEPROM, most microcontrollers have a large flash into

which we store the software.

For all the systems in this class, we will store instructions and constants in flash ROM and place variables and

temporary data in static RAM.

5.15.15.15.1 OOOOURURURUR BBBBOARDOARDOARDOARD

The manual for our board can be found at:

http://www2.st.com/content/ccc/resource/technical/document/user_manual/e9/d2/00/5e/15/46/44/0e/D

M00148985.pdf/files/DM00148985.pdf/_jcr_content/translations/en.DM00148985.pdf

The power of our board consists of the following:

• Microcontroller: ARM4 STM32F411VET6

microcontroller featuring

o 512 KB of Flash memory (ROM)

o 128 KB of RAM

• Debug: On-board ST-LINK/V2 with selection

mode switch to use the kit as a standalone

STLINK/V2

• Board power supply: through USB bus or from

an external 5 V supply voltage

• Gyro: L3GD20, ST MEMS motion sensor, 3-axis

digital output gyroscope.

• Accelerometer: LSM303DLHC, ST MEMS

system-in-package featuring

o a 3D digital linear acceleration sensor

o and a 3D digital magnetic sensor.

• Microphone: MP45DT02, ST MEMS audio

sensor, omnidirectional digital microphone

• Speaker Output: CS43L22, audio DAC with integrated class D speaker driver

• 8 LEDs: Power, USB connection, Orange, Green, Red and Blue

• 2 Pushbuttons: (user and reset)

• USB OTG with micro-AB connector

• Extension header for LQFP100 I/Os for a quick connection to the prototyping board and an easy

probing

6666 SYSTEMSYSTEMSYSTEMSYSTEM SETUPSETUPSETUPSETUP

The set up will consist of a “text editor” interface called Eclipse. We will improve Eclipse with a set of support

for our ARM processor by downloading a STM32 package from www.openstm32.org. Also, we will use

OpenOCD, as the On Chip Debuger which comes as part of the STM32 package.

While you download and install the software make sure to listen to

http://embedded.fm/episodes/2013/6/25/8-kidnapped-and-blindfolded

6.16.16.16.1 ECLIPSEECLIPSEECLIPSEECLIPSE

Eclipse is the interface you will use to program and it will hold the files you need for your board. In order to

use eclipse you will use a Workspace.

A workspace is a concept of grouping together:

• a set of (somehow) related projects: For example all files using board SMT32F411E-DISCO

• some configuration pertaining to all these projects: The HAL files you want to leverage

• some settings for Eclipse itself

This happens by creating a directory and putting inside it (you don't have to do it, it's done for you) files that

manage to tell Eclipse these information. All you have to do explicitly is to select the folder where these files

will be placed. And this folder doesn't need to be the same where you put your source code - preferentially it

won't be.

To do so for this workshop we will use the following configuration:

But in general the folder structure you want to follow should be of the following characteristics:

1. Create a folder for your projects:

/projects

2. Create a folder each project, and group the project's sub-projects inside of it:

/projects/proj1/subproj1_1

/projects/proj1/subproj1_2

/projects/proj2/subproj2_1

3. Create a separate folder for your workspaces:

/eclipse-workspaces

4. Create workspaces for your projects:

/eclipse-workspaces/proj1

/eclipse-workspaces/proj2

• Make sure that you have Java installed

(http://www.java.com/en/download/manual.jsp0)

o Use the default folder

• Start by downloading Eclipse from

http://www.eclipse.org/downloads/

• Extract the .zip file contents to the C:\Program

Files\Eclipse (if using Win-7 64Bit) or equivalent

o This will take about 10 min

• Go to C:\Program Files\Eclipse and run eclipse.exe

• On the pop up window create a desktop. Note the

folder selected to understand where to look for your

files.

o Note that you should not include spaces on your

folder. Keep names simple

• Click OK

• And you should have Eclipse installed and Running:

• Make sure to create a shortcut to your desktop

• Familiarize yourself with the interface

6.26.26.26.2 IIIINSTALLING NSTALLING NSTALLING NSTALLING OOOOPENPENPENPENSTM32STM32STM32STM32

• Note if you have a Mac you can use the following:

http://www.erikandre.org/2015/09/getting-started-with-

openstm32-on-osx.html

• Have your email on hand and readily available

• Go to http://www.openstm32.org/tiki-register.php

and register to download it

• After your register, please make sure to check your

email, as it will be needed to complete registration.

• Log in at: http://www.openstm32.org/tiki-

login_scr.php

• Click “System Workbench for STM32”

• Find “Installing System Workbench for STM32 from Eclipse”

o Installation of System Workbench for STM32 - Bare edition will be done through the standard

Eclipse installer.

o You should Start Eclipse

� then open menu "Help >> Install New Software";

� this will open the "Available Software" dialog:

o Click on "Add:"

o Give a name to the update site (System

Workbench for STM32 - Bare Machine

edition)

o Set the location to http://www.openstm32.org/Eclipse-updates/org.openstm32.system-

workbench.site

o Then click "OK" to create the update site

• You should select all of the OpenSTM32 tools on the new widow showing available programs and

click "Next>"

o Accept the license and System Workbench for STM32 - Bare Metal edition will install itself in

your Eclipse setup.

o Restart Eclipse for the tools to be available (Eclipse will automatically suggest the restart.)

6.36.36.36.3 STMSTMSTMSTM USBUSBUSBUSB DDDDRIVERSRIVERSRIVERSRIVERS

• If you have any issues installing the STM drivers you can manually install them as following:

• Install the USB drivers needed by the board from the STMicroelectronics website:

http://www.st.com/web/en/catalog/tools/PF260219

o Scroll down to the bottom of the site

o Under “Sample & Buy” click the download button

o The file will be a ZIP file

o Extract all files and stlink_winusb_install.bat to install the drivers

o This will take some time to install…

7777 EEEENVIRONMENT NVIRONMENT NVIRONMENT NVIRONMENT SSSSETETETETUUUUPPPP

Until now you should have successfully downloaded and installed Eclipse.

Also you should have installed from Eclipse installer the USB drivers needed for your board.

You should also have installed from within Eclipse IDE, the STM32 tool set along with the openOCD and

compilers.

7.17.17.17.1 CCCCONNECTING THE ONNECTING THE ONNECTING THE ONNECTING THE STSTSTST BOARDBOARDBOARDBOARD

Plug the USB cable to your board

The LEDs on your board should now be blinking.

o Push the BLUE button and the LEDs will go out.

o Shake the board and the LEDs will light up in response to the movements.

o Push the blue button again and the LEDs will blink

Now this is the initial program the development board comes pre installed. We will now create a new project

in Eclipse and download our first program Blinky, the hardware equivalent to “Hello World”.

The next steps will guide you to set up the details for the specific board that we are using on Eclipse.

Once we complete this successfully we will have a tool chain that we can use to star writing our code

• Before you start anything create the following folder structure:

o Start new project:

o Under Project Type: expand Executable and click on Ac6 STM32 MCU Project

o Click next on the following screen

o Under the Board option find and select STM32F411E-DISCO

o Make sure that you click “NEXT”, and then select HAL (Hardware Abstraction Layer”

o Note that the first time there will be a warning that says: “Target firmware has not been found,

please download it”

o Click on the download bottom and accept the terms and conditions

o After clicking OK, the bar at the bottom will start to process the Firmware download. This will take

some time.

o Note if the system errors out, try it again as the connection can be lost from time to time

o What have we done here:

o We requested Eclipse to download and use the HAL libraries.

o HAL = Hardware Abstraction Layer

� HAL means that STMicro is providing you with a set of names so that you do not have

to poke at the controller registers in order to set up things

� HAL allows to port the code between different microcontrollers, such that you do not

have to rewrite code if the register names changes

� HAL is somewhat equivalent to what Arduino does

to allow faster programming

o There was also the option to use SPL

� SPL= Standard Peripheral Library: This library is

rather interesting for learning as it is more hands

on and down to the lower level of the registers

� SPL certainly helps you understand better the

microcontroller inner workings

� While SPL is great STMicro has moved to HAL

therefore we will use it as part of this class

o Select “Add low level drivers in project” and “As static external

libraries”.

o Click Finish

You might notice that Eclipse did not show anything after it is done. This is

because some versions of Eclipse requires that you show the Workspace.

If you run into that follow this steps:

o Got to Window >> Perspective >> Open Perspective>

o New window: click on <C/C++>

o Go to Window >> Show View >> Project Explorer

o Close the welcome screen for Eclipse

7.27.27.27.2 EEEECLIPSE CLIPSE CLIPSE CLIPSE QQQQUICK AND UICK AND UICK AND UICK AND DDDDIRTY IRTY IRTY IRTY GGGGUIDEUIDEUIDEUIDE

Some things to keep in mind and straight as you run into issues. OpenSTM32 workbench is the package that

provided you access to the following:

• To Enable you to code:

o STM32 Devices database and libraries

o Source code editor

o Use the Linaro-provided version of arm-none-gnueabi;

• To enable you to Compile

o Linker script generator

o Building tools (GCC-based cross compiler, assembler, linker)

o Quickly build it and generate the ELF file, binary

• To enable you to Debug

o Debugging tools OpenOCD (modified to

support SMT32 boards)

o Debugging tools GDB

o Debug configuration to do the connection

with ST-Link/V2 to debug on chip

• Flash programing tools

To check out more details go to Run >> Run

Configurations

Note that your Main and Debug settings are under tabs

when you pick the Ac6 STM32 Debugging configuration

entry.

8888 LLLLET ET ET ET PPPPLAYLAYLAYLAY “H“H“H“HELLO ELLO ELLO ELLO WWWWORLDORLDORLDORLD”””” –––– AAAA....KAKAKAKA.... BBBBLINKYLINKYLINKYLINKY

In hardware and embedded programming the first program to ensure you have set up the tool chain

correctly, you program Blinky.

Blinky is a simple program that will say Hello to the world by blinking an LED. From that you could potentially

be able to blink all other LEDs as well as get input from the switch.

Blinky consist of the following code:

/**
 **
 * @file main.c
 * @author Ac6
 * @version V1.0
 * @date 01-December-2013
 * @brief This function initializes then turns on all of the LEDs
 **
 */

#include "stm32f4xx.h"
#include "stm32f411e_discovery.h"

#define ONE_SECOND(1000U) /* 1000 milliseconds */
#define FOREVERfor (;;)/* A macro to make infinite loops a little more readable */

int main(void) {

 HAL_Init();/* Initialize the hardware abstraction layer */

 BSP_LED_Init(LED3);/* Initialize the LEDs using the routines from

stm32f401_discovery.h */
 BSP_LED_Init(LED4);
 BSP_LED_Init(LED5);
 BSP_LED_Init(LED6);

 FOREVER {
 BSP_LED_Off(LED3);/* LED3 is orange */
 BSP_LED_On(LED4);/* LED4 is green */
 BSP_LED_Off(LED5);/* LED5 is red */
 BSP_LED_On(LED6);/* LED6 is blue */

 HAL_Delay(ONE_SECOND);/* HAL_Delay is a routine that wastes time for the

specified many milliseconds */

 BSP_LED_On(LED3);
 BSP_LED_Off(LED4);
 BSP_LED_On(LED5);
 BSP_LED_Off(LED6);

 HAL_Delay(ONE_SECOND);
 }
}

