Embedded Thursday Binary, Registers and Blinky

Today

π

- > The project Goal and System
- > Registers Discussion
- > Binaries
- >Blinky

π

Goal Description

- > Learn C as embedded language
- > Use C to understand underlying processor
- > Have a project so learning stays
 - We are making a self balancing robot

Why Registers?

> It allows us to set up the configuration for the controller
> It allows us to control ports

6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

> RCC_AHB1ENR = 0x0000008 Enable GPIO D

> RCC_AHB1ENR = 0x0000001 Enable GPIO A

> RCC_AHB1ENR = 0x0000008 Add GPIO A enable

91	30	6.0	20	61	20	20	24	6.0	~~	- C 1	20	10	10		
				Basapian					DMA2EN	DMA1EN		Pe	bound		
				ruesei vei					rw	rw		aren veru			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved			CRCEN		Res	erved		GPIOH EN	Rese	erved	GPIOEEN	GPIO <mark>D</mark> EN	GPIOC EN	GPIOB EN	GPIOA EN
			rw.					nw	1		rw	rw.	rw	IW	EW.

- Bit 3 GPIODEN: IO port D clock enable
 Set and cleared by software.
 0: IO port D clock disabled
 - 1: IO port D clock enabled

🖬 Calculator														
View Edit Help														
								8						
21 0009 000 03 0009 000	96 66 96 66	100 100	6969 6969	9999 47 9999 15	089 089	0 05 0 05	166 <mark>:</mark> 166 (0000 32 1000 0						
() Hex		Mod	A	MC	MR	MS	M+	M-						
O Dec			В	-	α	c	1	4						
© Bin	RoL	RoR	C	7	8	9	1	%						
@ Qword	Or	Xor	D	4	5	6	*	1/x						
C Dword	Lsh	Rsh	E	1	2	3	-							
🔘 Byte	Not	And	F	0)		+	-						

π

Registers Expected by microcontroller

At power up all GPIOs are disabled
 To blink an LED enable PORT where LED are connected

- > GPIO PORT enabled can be INPUT or OUTPUT
 - Set LEDs to be OUTPUTS

π

- IN/OUT Register control is GPIOx_MODER

8.4.1	I	GPI Addre	O poi ess off	rt mo set: 0x	de re :00	giste	r (GPI	Ox_N	IODE	R) (x	= A	E and	I H)		
LED6 31 30		LE 29	D5 28	LE 27	D3	LE 25	D4	D 23	22	21	20	19	18	17	16
MODER15[1:0]		MODER14[1:0]		MODER13[1:0]		MODER12[1:0]		MODER11[1:0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]	
rwO	r v r	rwO	rw 1	r v()	M	r 🛛	1	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODER7[1:0]		MODER6[1:0] MODER5[1:0]		MODER4[1:0]		MODER3[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

> GPIOD_MODER = 0X5500000

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode. 00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

Operators Used

- > XOR ^= (switch bit to opposite value)
- > OR |= (Impact a bit, don't disturb others)
- > Member of -> (similar to house.room)
- > 0100 ^= 0001 → Results in 0101
- > 1101 |= 0100 → Results in 1001
- > 1001 |= 0100 → Results in 1101
- > RCC->AHB1ENR → refers to RCC_AHB1ENR where RCC is a pointer in memory for the register

π

Blinky

```
12 #include "stm32f4xx.h"
13 #include "stm32f411e_discovery.h"
14
15⊖ int main(void) {
16 // RCC->AHB1ENR |= RCC AHB1ENR GPIODEN; // enable the clock to PORT-D
        RCC->AHB1ENR = 0x00000008; // enable the clock to PORT-D
17
       GPIOD->MODER = 0X55000000; // Set Port-D pin12 to 14 to OUTPUTS
18
19
20⊕ /* GPIOD->MODER |= (1 << 24); // set pin 12 to be general purpose output.
       volatile int i;
25
26
       while (1){
27
28⊕ /*
           GPIOD->ODR ^= (1 << 12);...
33
           GPIOD->ODR ^= 0x0000F000;
                                          11
           for (i = 0; i < 500000; i++);</pre>
34
35
           }
36 }
```