
Embedded Thursday
Binary, Registers and Blinky

Today

› The project Goal and System

› Registers Discussion

› Binaries

› Blinky

Goal Description

› Learn C as embedded language

› Use C to understand underlying processor

› Have a project so learning stays
– We are making a self balancing robot

STM32F411E

› Port-A: 0-15

› Port-B: 0-10, 12-15

› Port-C: 0-15

› Port-D: 0-15

› Port-H: 0-1

Why Registers?

› It allows us to set up the configuration for the controller

› It allows us to control ports

› RCC_AHB1ENR = 0x00000008 Enable GPIO D

› RCC_AHB1ENR = 0x00000001 Enable GPIO A

› RCC_AHB1ENR |= |= |= |= 0x00000008 Add GPIO A enable

Registers Expected by microcontroller

› At power up all GPIOs are disabled
– To blink an LED enable PORT where LED are connected

› GPIO PORT enabled can be INPUT or OUTPUT
– Set LEDs to be OUTPUTS
– IN/OUT Register control is GPIOx_MODER

› GPIOD_MODER = 0X55000000

Operators Used

› XOR ^= (switch bit to opposite value)

› OR |= (Impact a bit, don’t disturb others)

› Member of -> (similar to house.room)

› 0100000 ^= 0001111 � Results in 0101

› 1111101 |= 0111100� Results in 1001

› 1000001 |= 0111100� Results in 1101

› RCC->AHB1ENR � refers to RCC_AHB1ENR where RCC is
a pointer in memory for the register

Blinky

